Learning Bayesian network parameters under incomplete data with domain knowledge
نویسندگان
چکیده
Bayesian networks have gained increasing attention in recent years. One key issue in Bayesian networks (BNs) is parameter learning. When training data is incomplete or sparse or when multiple hidden nodes exist, learning parameters in Bayesian networks (BNs) becomes extremely difficult. Under these circumstances, the learning algorithms are required to operate in a high-dimensional search space and they could easily get trapped among copious local maxima. This paper presents a learning algorithm to incorporate domain knowledge into the learning to regularize the otherwise ill-posed problem, to limit the search space, and to avoid local optima. Unlike the conventional approaches that typically exploit the quantitative domain knowledge such as prior probability distribution, our method systematically incorporates qualitative constraints on some of the parameters into the learning process. Specifically, the problem is formulated as a constrained optimization problem, where an objective function is defined as a combination of the likelihood function and penalty functions constructed from the qualitative domain knowledge. Then, a gradient-descent procedure is systematically integrated with the E-step and M-step of the EM algorithm, to estimate the parameters iteratively 2 until it converges. The experiments with both synthetic data and real data for facial action recognition show our algorithm improves the accuracy of the learned BN parameters significantly over the conventional EM algorithm.
منابع مشابه
Bayesian Network Learning with Parameter Constraints
The task of learning models for many real-world problems requires incorporating domain knowledge into learning algorithms, to enable accurate learning from a realistic volume of training data. This paper considers a variety of types of domain knowledge for constraining parameter estimates when learning Bayesian Networks. In particular, we consider domain knowledge that constrains the values or ...
متن کاملA Tutorial on Learning with Bayesian Networks
A Bayesian network is a graphical model that encodes probabilistic relationships among variables of interest. When used in conjunction with statistical techniques, the graphical model has several advantages for data analysis. One, because the model encodes dependencies among all variables, it readily handles situations where some data entries are missing. Two, a Bayesian network can be used to ...
متن کاملExploiting Parameter Domain Knowledge for Learning in Bayesian Networks
The task of learning models for many real-world problems requires researchers to incorporate problem Domain Knowledge into the learning algorithms because there is rarely enough training data to enable accurate learning of the structures and underlying relationships in the problem. Domain Knowledge comes in many forms. Domain Knowledge about relevance of variables (Feature Selection) can help u...
متن کاملLearning Bayesian network parameters under order constraints
We consider the problem of learning the parameters of a Bayesian network from data, while taking into account prior knowledge about the signs of influences between variables. Such prior knowledge can be readily obtained from domain experts. We show that this problem of parameter learning is a special case of isotonic regression and provide a simple algorithm for computing isotonic estimates. Ou...
متن کاملEfficient Algorithms for Bayesian Network Parameter Learning from Incomplete Data
We propose a family of efficient algorithms for learning the parameters of a Bayesian network from incomplete data. Our approach is based on recent theoretical analyses of missing data problems, which utilize a graphical representation, called the missingness graph. In the case of MCAR and MAR data, this graph need not be explicit, and yet we can still obtain closedform, asymptotically consiste...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 42 شماره
صفحات -
تاریخ انتشار 2009